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Abstract Functional neuroimaging studies have found

intra-regional activity and inter-regional connectivity

alterations in patients with post-traumatic stress disorder

(PTSD). However, the results of these studies are based on

group-level statistics and therefore it is unclear whether

PTSD can be discriminated at single-subject level, for

instance using the machine learning approach. Here, we

proposed a novel framework to identify PTSD using multi-

level measures derived from resting-state functional MRI

(fMRI). Specifically, three levels of measures were

extracted as classification features: (1) regional amplitude

of low-frequency fluctuations (univariate feature), which

represents local spontaneous synchronous neural activity;

(2) temporal functional connectivity (bivariate feature),

which represents the extent of similarity of local activity

between two regions, and (3) spatial functional connec-

tivity (multivariate feature), which represents the extent of

similarity of temporal correlation maps between two

regions. Our method was evaluated on 20 PTSD patients

and 20 demographically matched healthy controls. The

experimental results showed that the features of each level

could successfully discriminate PTSD patients from heal-

thy controls. Furthermore, the combination of multi-level

features using multi-kernel learning can further improve
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the classification performance. Specifically, the classifica-

tion accuracy obtained by the proposed framework was

92.5 %, which was an increase of at least 5 and 17.5 %

from the two-level and single-level feature based methods,

respectively. Particularly, the limbic structure and pre-

frontal cortex provided the most discriminant features for

classification, consistent with results reported in previous

studies. Together, this study demonstrated for the first time

that patients with PTSD can be identified at the individual

level using resting-state fMRI data. The promising classi-

fication results indicated that this method may provide a

complementary approach for improving the clinical diag-

nosis of PTSD.

Keywords Temporal functional connectivity � Spatial

functional connectivity � Multi-level feature � Multi-kernel

learning � Limbic system � Prefrontal cortex

Introduction

Post-traumatic stress disorder (PTSD) is a highly disabling

condition observed in individuals exposed to a traumatic

event, such as war, violent crime and motor vehicle acci-

dents. Among these traumas, motor vehicle accidents are

the leading causes of PTSD (Chossegros et al. 2011). It has

been found that individuals who were in an accident where

medical attention was needed, an estimated 50 % of those

developed PTSD (Blanchard and Hickling 2004). PTSD is

characterized by persistent recall of the traumatic event,

avoidance of any reminders of this trauma and hyper-

arousal (Yehuda and Flory 2007). Patients with PTSD

suffer from enduring vigilance and sensitivity to environ-

mental threat (van der Kolk 1989), and 19 % of patients

will attempt suicide (Kessler 2000; Kessler et al. 1999).

However, the diagnosis of PTSD to date is mainly based on

assessment of signs and symptoms and a thorough psy-

chological evaluation. Therefore, there has been substantial

interest in assisting diagnosis of PTSD, by utilizing auto-

mated, unbiased methods.

Functional neuroimaging studies have demonstrated that

PTSD is linked with local abnormalities in many brain

regions, such as hippocampus (Astur et al. 2006), amygdala

(Bryant et al. 2008), insula (Chen et al. 2009), superior

frontal gyrus and middle temporal gyrus (Yin et al. 2012).

Moreover, changes in functional connectivity have been

found between specific region pairs in PTSD, such as

decreased lingual-middle temporal gyrus connectivity (Qin

et al. 2012), decreased amygdala-putamen connectivity

(Linnman et al. 2011), increased amygdala-insula connec-

tivity (Rabinak et al. 2011) and stronger basolateral

amygdala-pregenual anterior cingulate cortex connectivity

(Brown et al. 2014). These widespread differences indicate

that abnormalities of brain function in PTSD not only relate

to a single region but also to functional connectivity.

Although the aforementioned findings suggest brain

functional changes in PTSD patients, there is limited

application of these findings for clinical diagnosis. This is

because all of these studies have used mass-univariate

analytical methods that allow inference at the group level

only. For neuroimaging to be useful in a clinical setting,

one must be able to provide predictions at the individual

level. In the past few years, the application of machine

learning techniques to neuroimaging has made promising

improvements in brain disease classification (Haller et al.

2014). Relative to traditional analyses based on group

comparison, machine learning methods allow inference at

the single-subject level rather than group level. Further-

more, machine learning approaches are sensitive to subtle

and spatially distributed differences in the brain that might

be undetectable using group comparison methods.

Recently, a growing number of studies have applied

machine learning methods on neuroimaging data to iden-

tify psychiatric disease (Liu et al. 2012a; Mourao-Miranda

et al. 2012; Zeng et al. 2012). However, few studies have

been conducted in PTSD.

There is ample evidence from previous functional neu-

roimaging studies that the spontaneous low frequency

oscillations of the human brain measured with resting-state

functional MRI (fMRI) are physiologically meaningful and

relate to neural spontaneous activity (Biswal et al. 1995).

Resting-state fMRI can provide two distinct types of infor-

mation about brain function: segregation and integration.

The regional amplitude of low-frequency fluctuations

(ALFF), reflecting spontaneous neural activity during rest-

ing-state, can be used to explore regional neural function

(Guo et al. 2012; Zang et al. 2007). Measures of functional

connectivity at the temporal scale, reflecting the level of

integration of that local activity across brain regions, can be

utilized to improve the knowledge of brain networks (Grei-

cius 2008). Therefore, investigation of the ALFF may

advance our understanding of the functional segregation of

the brain, while investigation on temporal connectivity pat-

terns may increase our understanding of the functional

integration within the brain (Sporns 2011). Addition-

ally, functional connectivity at the spatial scale has been

used to characterize the functional architecture of the human

and monkey brain (Fox et al. 2006; Vincent et al. 2007). In

contrast to the temporal correlation patterns obtained by

measuring the extent of similarity of BOLD time series

between two regions, spatial correlation patterns are

obtained by measuring the extent of similarity of temporal

correlation maps of the regions (He et al. 2009).

From the viewpoint above, ALFF, temporal connectivity

and spatial connectivity can be considered as the different

levels of the functional hierarchy. Recent studies have
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demonstrated that integrating different levels of features

can successfully classify brain disease (Dai et al. 2012;

Sato et al. 2012) and combination of multi-level features

can give better classification performance than single-level

features. Traditionally, we can combine different levels of

features by concatenating them into a long feature vector

and then train a single classifier. However, the disadvan-

tages of such concatenation are twofold. First, the concat-

enation method equally treats each level of features,

without effectively exploring the complementary (different

but useful) information carried by different feature levels.

Second, the appropriate normalization (e.g., z-score stan-

dardization or scaled to range [-1, ?1]) is needed for

concatenating features extracted from different sources

and, if not, the prediction might be easily dominated by a

single feature type.

Motivated by issue above, a novel framework was

proposed to differentiate PTSD patients from healthy

controls. Specifically, ALFF, temporal connectivity pat-

terns and spatial connectivity patterns were extracted from

resting-state fMRI data and used as classification features.

A hybrid feature selection method was then utilized at each

feature level separately to select the optimal features for

classification. Finally, a multi-kernel support vector

machine (SVM) algorithm was employed to combine the

selected features of each level for PTSD diagnosis. In the

present study, our aims were firstly to examine whether

ALFF, temporal connectivity patterns and spatial connec-

tivity patterns would allow accurate discrimination

between PTSD patients and healthy controls, and secondly,

to investigate whether the complementary information

conveyed among different feature levels can be integrated

to improve classification performance.

Materials and Methods

Subjects

Twenty right-handed patients with PTSD who had been

involved in a motor vehicle accident were recruited from

the Southwest Hospital, Third Military Medical Univer-

sity, China. Six months following each participant’s motor

accident, the diagnosis of PTSD was made with the Cli-

nician-Administered PTSD Scale for DSM-IV (CAPS-DX)

(Blake et al. 1995). These subjects participated in this

study within 1 month after diagnosis. Three main kinds of

symptoms were assessed for both intensity and frequency,

including the symptoms of re-experiencing, avoidant and

increased arousal. A severity score for each symptom

was computed by summing up the intensity and fre-

quency scores, which were summed up for all 17 symp-

tom questions and/or for the three symptoms. Exclusion

criteria included suffering any brain injury in the motor

vehicle accident, psychiatric co-morbidity (such as major

depressive disorder and other anxiety disorders) which

was assessed using the Structured Clinical Interview for

DSM-IV (First et al. 1995), a history of neuropsychiatric

disorders, a history of loss consciousness and alcohol or

drug abuse. All patients had not taken psychotropic

medication in the past 2 months. In addition, twenty right-

handed healthy controls matched for age, gender and

years of education were recruited from the community by

advertisement. None of them had a history of psychiatric

or neurological disorders, recent medication that might

affect brain function and alcohol or drug abuse. This

study was approved by the local ethical committee, and

written informed consent was obtained from each subject.

Overview of Methodology

The proposed PTSD classification framework is shown in

Fig. 1, which is summarized as follows:

1. After fMRI data preprocessing, ALFF map, temporal

functional connectivity matrix and spatial functional

connectivity matrix were calculated for each subject.

Subsequently, these three levels of features were

extracted from each subject.

2. For each feature level, we used a hybrid feature

selection method which comprised t test and SVM-

based feature selection to obtain the optimal subset of

features.

3. Individual kernel matrices were computed from the

selected features of each level and then combined to

form a single mixed-kernel matrix.

4. The integrated mixed-kernel matrix was employed to

train SVM classifiers and unbiased estimation of the

classification performance was obtained via a nested

cross-validation scheme.

MRI Data Acquisition

The fMRI images were acquired on a 3.0-T Siemens MRI

scanner (Trio; Siemens Medical, Erlangen, Germany).

During scanning, the subjects were instructed to keep their

eyes closed, relax, and move as little as possible. Foam pads

were used to minimize head movements and scanner noise.

Functional sequences consisted of single-shot, echo-planar

imaging (EPI) with repetition time (TR) = 2,000 ms, echo

time (TE) = 30 ms, flip angle (FA) = 90�, matrix = 64 9

64, field of view (FOV) = 220 mm 9220 mm, sli-

ces = 36, slice thickness = 3 mm. For each participant, the

fMRI scanning lasted for 6 min, and 180 volumes were

obtained.
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Data Preprocessing

Image preprocessing was performed with Data Processing

Assistant for Resting-State fMRI (DPARSF) toolbox (Chao-

Gan and Yu-Feng 2010). Briefly, the first 10 volumes of

each subject were discarded to allow for magnetization

equilibrium and the participants adapting to the scanning

noise (Liu et al. 2013b). The remaining 170 volumes were

corrected for the acquisition time delay between slices and

then realigned to the first volume for the head motion cor-

rection. None of the participants was excluded according to

the criterion of a displacement of more than 3 mm or an

Fig. 1 Schematic diagram

illustrating the proposed

classification framework using

multi-kernel SVM with multi-

level features derived from

resting-state functional MRI.

ALFF amplitude of low-

frequency fluctuations, AAL

automated anatomical labeling,

SVM-RFE support vector

machine-recursive feature

elimination
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angular rotation of greater than 3� in any direction, as sug-

gested by Wang et al. (2013). Moreover, the head motion

profiles were matched between the PTSD and HC groups

(p [ 0.135 in any direction). The realigned images were

spatially normalized to the Montreal Neurological Institute

EPI template in SPM8 by combining affine transformation

and non-linear deformations and resampled to 3 9 3 9

3 mm3.

ALFF

The normalized fMRI data were first spatially smoothed

with an 8 mm full width at half maximum (FWHM)

Gaussian kernel (Liu et al. 2012b). After linear-trend

removal and band-pass filtering (0.01–0.08 Hz), we

regressed six head motion parameters, white matter signal,

cerebrospinal fluid signal and their first derivatives. The

time series were then transformed into frequency domain

using fast Fourier transformation and the power spectrum

was estimated. Because the power of a given frequency is

proportional to the square of the amplitude of the frequency

component, the average square root of the power spectrum

is taken as the ALFF (Zang et al. 2007; Zuo et al. 2010).

For standardization purpose, the ALFF of each voxel was

divided by the global mean ALFF value. The mean ALFF

map of each group is presented in Fig. 2.

Functional Connectivity at the Temporal Scale

To construct large-scale brain functional connectivity at the

temporal scale, the registered fMRI data were first divided

into 116 anatomical regions of interest (ROIs) according to

the automated anatomical labeling (AAL) atlas (Tzourio-

Mazoyer et al. 2002). The regions in the AAL atlas were

listed in Table 1. No spatial smoothing was applied in the

preprocessing procedure in order to avoid introducing

artificial local spatial correlations (Liu et al. 2013a). The

mean time series of each ROI was obtained by averaging the

time series of all voxels within that ROI. The time series were

further linearly detrended and temporally band-pass filtered.

The nuisance signals involving six head motion parameters,

white matter signal, cerebrospinal fluid signal and their first

derivatives were then regressed out from the data. It is still an

ongoing controversy of removing the global signal in the

calculation of resting-state functional connectivity (Fox et al.

2009; Murphy et al. 2009; Saad et al. 2012). Therefore, we

did not regress out the global signal in this study. The

residuals of these regressions were used for the following

functional connectivity analysis. Finally, for each subject, a

temporal correlation matrix was obtained by calculating the

Pearson’s correlation coefficients between the residual time

series of each pair of regions as

rab ¼
PT

t¼1 yaðtÞ � �ya½ � � ½ybðtÞ � �yb�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1 yaðtÞ � �ya½ �2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1 ½ybðtÞ � �yb�2

q ð1Þ

where yaðtÞ and ybðtÞ t ¼ 1; 2; . . .; T ; T ¼ 170ð Þ were the

residual time series of region a and b with means of �ya and

�yb, respectively. A Fisher’s Z-transformation (Cohen et al.

2013) was applied on the elements of the correlation matrix

to improve the normality as

z ¼ 1

2
½lnð1þ rÞ � lnð1� rÞ� ð2Þ

where r is the Pearson correlation coefficient and z is

approximately a normal distribution. The mean temporal

correlation matrix of each group is provided in Fig. 3.

Functional Connectivity at the Spatial Scale

The spatial functional connectivity between any two brain

regions was computed as (He et al. 2009)

Fig. 2 Distribution of ALFF maps within groups. Mean ALFF maps within the patient group (left) and control group (right). The color bar

represents the strength of ALFF. PTSD post-traumatic stress disorder, HC healthy control, L left, R right (Color figure online)
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Rab ¼
PM

m¼1;m6¼a;m6¼b zaðmÞ � �za½ � � zbðmÞ � �zb½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

m¼1;m 6¼a;m 6¼b zaðmÞ � �za½ �2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

m¼1;m6¼a;m6¼b zbðmÞ � �zb½ �2
q

ð3Þ

where zaðmÞ and zbðmÞ m ¼ 1; 2; . . .;M; m 6¼ a;m 6¼ b;ð
M ¼ 116Þ were the ath and bth columns of the temporal

correlation matrix obtained above (after Fisher’s Z-trans-

formation) with means of �za and �zb, respectively. The

spatial connectivity between two brain regions denotes the

degree of similarity in the temporal connectivity patterns of

the two regions. The Fisher’s Z-transformation was also

performed on the elements of the spatial connectivity

matrix to improve the normality. The mean spatial corre-

lation matrix of each group is shown in Fig. 4.

Feature Extraction

The ALFF map for each subject was parcellated into 116

ROIs based on the AAL atlas. The mean ALFF values of

Table 1 The names and

abbreviations of the AAL

template

Odd and even numbers (1–108)

represent brain regions of left

and right hemispheres,

respectively

AAL automated anatomical

labeling

Index Regions Abbr. Index Regions Abbr.

(1,2) Precentral gyrus PreCG (63,64) Supramarginal gyrus SMG

(3,4) Superior frontal gyrus SFG (65,66) Angular gyrus ANG

(5,6) Superior frontal gyrus,

orbital part

SFGorb (67,68) Precuneus PCUN

(7,8) Middle frontal gyrus MFG (69,70) Paracentral lobule PCL

(9,10) Middle frontal gyrus, orbital

part

MFGorb (71,72) Caudate nucleus CAU

(11,12) Inferior frontal gyrus,

opercular part

IFGoper (73,74) Lenticular nucleus, putamen PUT

(13,14) Inferior frontal gyrus,

triangular part

IFGtri (75,76) Lenticular nucleus, pallidum PAL

(15,16) Inferior frontal gyrus,

orbital part

IFGorb (77,78) Thalamus THA

(17,18) Rolandic operculum ROL (79,80) Heschl gyrus HES

(19,20) Supplementary motor area SMA (81,82) Superior temporal gyrus STG

(21,22) Olfactory cortex OLF (83,84) Temporal pole: superior

temporal gyrus

TPOsup

(23,24) Superior frontal gyrus,

medial

SFGmed (85,86) Middle temporal gyrus MTG

(25,26) Superior frontal gyrus,

medial orbital

SFGmorb (87,88) Temporal pole: middle

temporal gyrus

TPOmid

(27,28) Gyrus rectus REC (89,90) Inferior temporal gyrus ITG

(29,30) Insula INS (91,92) Cerebelum_Crus1 CERcr1

(31,32) Anterior cingulate gyrus ACG (93,94) Cerebelum_Crus2 CERcr2

(33,34) Median cingulate gyrus MCG (95,96) Cerebelum_3 CER3

(35,36) Posterior cingulate gyrus PCG (97,98) Cerebelum_4&5 CER4&5

(37,38) Hippocampus HIP (99,100) Cerebelum_6 CER6

(39,40) Parahippocampal gyrus PHG (101,102) Cerebelum_7 CER7

(41,42) Amygdala AMYG (103,104) Cerebelum_8 CER8

(43,44) Calcarine fissure CAL (105,106) Cerebelum_9 CER9

(45,46) Cuneus CUN (107,108) Cerebelum_10 CER10

(47,48) Lingual gyrus LING 109 Vermis_1&2 VER1&2

(49,50) Superior occipital gyrus SOG 110 Vermis_3 VER3

(51,52) Middle occipital gyrus MOG 111 Vermis_4&5 VER4&5

(53,54) Inferior occipital gyrus IOG 112 Vermis_6 VER6

(55,56) Fusiform gyrus FFG 113 Vermis_7 VER7

(57,58) Postcentral gyrus PoCG 114 Vermis_8 VER8

(59,60) Superior parietal gyrus SPG 115 Vermis_9 VER9

(61,62) Inferior parietal lobule IPL 116 Vermis_10 VER10
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all the ROIs were computed and considered as

univariate features. In addition, we had a temporal/spa-

tial functional connectivity map for each subject.

Each map was represented by a 116 9 116 symmetric

matrix. Removing 116 diagonal elements in each

matrix, the upper triangle elements of the symmetric

matrix were extracted and viewed as bivariate/multivar-

iate features.

Feature Selection

The dimensionality of original features is much higher than

the number of samples, which may lead to the ‘‘curse of

dimensionality’’ problem and high computational complexity.

Feature selection is a useful and important method to remove

irrelevant or redundant features for dimensionality reduction

and improving the performance of the classifier (Guyon and

Fig. 3 Mean temporal functional connectivity matrix for patient group (left) and control group (right). The color bar represents the z value of

temporal functional connectivity. PTSD post-traumatic stress disorder, HC healthy control (Color figure online)

Fig. 4 Mean spatial functional connectivity matrix for patient group (left) and control group (right). The color bar represents the z value of

spatial functional connectivity. PTSD post-traumatic stress disorder, HC healthy control (Color figure online)
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Elisseeff 2003). We used a hybrid feature selection method,

which combines filter- and wrapper-based approaches, to

select the most relevant features for PTSD classification.

Specifically, in the filter-based approach, only features with a

p value smaller than the predefined threshold (p \ 0.05,

uncorrected), measured by a two-sample t test, were retained

for subsequent feature selection. Despite the reduction in

dimensionality of feature space, the filter-based approach was

performed independently for each feature, ignoring the rela-

tionship (redundant or complementary) with other features.

This may cause some redundant features to be selected and

influence the classification performance. To avoid this prob-

lem, we employed a wrapper-based method named SVM-

recursive feature elimination [SVM-RFE (Guyon et al. 2002)]

for further feature selection, which jointly considers the dis-

criminative power among features. The aim of SVM-RFE is to

find a subset of features to reduce the classification error. This

hybrid feature selection method was performed separately on

each feature level. For each feature level, we finally have an

individual optimal feature subset. Of note, all the procedures

of feature selection were constrained to the training set,

without using the information of the test set, in order to avoid

the introduction of bias.

Multi-kernel SVM

In order to effectively integrate multi-level feature vectors,

multi-kernel SVM was used in this study (Liu et al. 2014). In

brief, after the feature selection procedure mentioned above,

we constructed a kernel matrix for each feature level, and then

combined them using a weighted linear combination as

follows:

K x1
n; x

2
n; x

3
n

� �
; x1; x2; x3
� �� �

¼
X3

f¼1

bf kf xf
n; x

f
� �

ð4Þ

where x1
n; x

2
n; x

3
n

� �
is the feature vectors of the nth sample with

three levels of features x1
n, x2

n and x3
n, and ðx1; x2; x3Þ is the

feature vectors of a testing sample. bf � 0 is the weighting

factor of f feature type with the constraint of
P3

f¼1 bf ¼ 1.

kf xf
n; x

f
� �

¼ /f xf
n

� �T
/f ðxf Þ is the kernel function for

samples xf
n and xf , and /f is a kernel-induced mapping

function of the f feature type. After constructing the inte-

grated kernel matrix, it is then straightforward to apply a

linear SVM as follows:

lðx1;x2;x3Þ¼ sign
XN

n¼1

cnanK x1
n;x

2
n;x

3
n

� �
;ðx1;x2;x3Þ

� �
þb

( )

ð5Þ

where cn 2 1;�1f g is the class label of the nth training

sample, N is the total number of training samples, an is a

Lagrangian multiplier, and b is a bias.

Cross-Validation

Support vector machine classifier with linear kernel was

implemented via the LIBSVM toolbox (Chang and Lin 2011),

with a default value for the parameter C (i.e., C = 1). A nested

leave-pair-out cross-validation strategy was employed to

evaluate the performance of the classifier, which could obtain

a relatively unbiased estimation of the true generalization

performance (Ecker et al. 2010; Mourao-Miranda et al. 2012).

In each trial, we first excluded a demographically relatively

matched pair of subjects (i.e., one to one matching, one subject

from each group) to comprise the test set, then performed a

second split where we repeatedly repartitioned the remaining

19 subject pairs into a validation set (1 pair) and training set

(18 pairs). This procedure is repeated until all subject pairs

have been left out for test. The optimal SVM model and

optimal feature subset were obtained in the inner cross-vali-

dation before applying it to the test set. Accuracy, sensitivity,

specificity and area under receiver operating characteristic

curve (AUC) were adopted to evaluate the performance of the

classifier based on the results of nested cross-validation.

Accuracy ¼ TPþ TN

TPþ FNþ TNþ FP
ð6Þ

Sensitivity ¼ TP

TPþ FN
ð7Þ

Specificity ¼ TN

TNþ FP
ð8Þ

where TP, TN, FP and FN denote true positive, true neg-

ative, false positive and false negative, respectively. In

addition, other statistical measures were further used to

evaluate the diagnostic power of the proposed method. The

Youden’s index (YOI), positive predictive value (PPV) and

negative predictive value (NPV) were defined as (Altman

and Bland 1994; Sokolova et al. 2006)

PPV ¼ TP

TPþ FP
ð9Þ

NPV ¼ TN

TNþ FN
ð10Þ

YOI ¼ TP

TPþ FN
þ TN

TNþ FP
� 1 ð11Þ

The PPV, also termed precision rate, is the proportion of

positive test results which are true positives. The NPV

reflects the proportion of subjects with a negative test result

who are correctly diagnosed. The YOI evaluates the ability

of a classifier to avoid failure by equally weighting its

performance on positive and negative samples.

Permutation Testing

Permutation testing was performed to derive a p value to

determine whether classification accuracy exceeded chance
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levels (50 %). To this end, the class labels were permuted

1,000 times (randomly assigning patient and control labels

to the training subjects) and repeated for the entire cross-

validation procedure. The p value was calculated as the

proportion of accuracies that are equal to or greater than

the one obtained by the real labels. If less than 5 %

(p \ 0.05) of the accuracies from all permutations was

equal to or exceeded the non-permutated value, the result

was deemed significant.

Results

Demographics and Clinical Characteristics

of the Participants

Two-sample t tests were performed to assess the differences

in age, years of education, intelligence quotient (IQ) score

and clinical score, while Chi square test was performed to

assess the difference in gender. The two groups were mat-

ched for gender (13 males for PTSD group and 14 males for

control group; p = 0.74), age (32.92 ± 8.48 years for PTSD

group; 31.53 ± 7.43 years for control group; p = 0.45),

years of education (11.20 ± 3.80 years for PTSD group;

13.00 ± 2.20 years for control group; p = 0.37) and IQ

value (98.20 ± 5.50 for PTSD group; 103.20 ± 6.30 for

control group; p = 0.24). Compared with healthy controls,

patients with PTSD have significantly higher CAPS total

score. The detailed demographic and clinical data are shown

in Table 2.

Experiment Settings

In our experiments, the proposed framework was compared

with six other classification approaches which used dif-

ferent levels of features: (1) univariate feature; (2) bivariate

feature; (3) multivariate feature; (4) combination of

univariate and bivariate features; (5) combination of uni-

variate and multivariate features; (6) combination of

bivariate and multivariate features. Of note, we adopted the

traditional single-kernel SVM classifier for classification

using single level of features and multi-kernel SVM clas-

sifier for classification using two levels of features. It was

also worth noting that the same training and test data were

used in all methods for fair comparison.

Comparison of Classification Performance

As seen in Table 3, our proposed method obtained better

performance than any of other six methods in all perfor-

mance measures. Specifically, our method achieved a

classification accuracy of 92.5 % (p \ 0.001), a sensitivity

of 90 %, a specificity of 95 %, a PPV of 94.7 %, an NPV

of 90.5 %, a YOI of 0.85 and an AUC of 0.91. In contrast,

for the single-level feature method, the best accuracy was

only 75 % (p \ 0.003) and for the two-level feature

method, the best accuracy was 87.5 % (p \ 0.001). The

improvement in classification performance indicated the

superiority of the proposed framework in better charac-

terizing the brain functional anomalies in PTSD patients.

We also evaluated the classification performance by direct

feature concatenation. Specifically, 116 univariate features

from ALFF, 6,670 bivariate features from temporal func-

tional connectivity and 6,670 multivariate features from

spatial functional connectivity were concatenated into a

long feature vector. Subsequently, the same feature selec-

tion and cross-validation procedure were performed, and

traditional single-kernel SVM classifier was used to eval-

uate the classification performance. As shown in Table 3,

the classification accuracy was 77.5 % and the AUC value

was 0.83, which was worse than our framework. In the

current study, we used a leave-pair-out cross-validation

approach to evaluate the performance of the classifier, and

the same training and test data were used in all methods for

fair comparison. Thus, it would be interesting to see

whether the same subjects were correctly classified across

different feature levels. As shown in Table 4, the mis-

classified subjects were not the same across the univariate,

bivariate and multivariate features, suggesting that the

complementary information existed among these features.

The Most Discriminative Features

The most discriminative features that were selected using

the proposed framework for PTSD classification were

investigated. Since the feature selection in each fold was

performed based on the training set, the selected features

differ across different cross-validation folds. Thus, we

defined the most discriminative features as features which

were most frequently selected in all cross-validations. The

Table 2 Demographics and clinical characteristics of patients with

PTSD and HC

Variables (mean ± SD) PTSD HC p value

Gender (M/F) 20 (13/7) 20 (14/6) 0.74a

Handedness (right/left) 20/0 20/0 –

Age (years) 32.92 ± 8.48 31.53 ± 7.43 0.45b

Education (years) 11.20 ± 3.80 13.00 ± 2.20 0.37b

IQ 98.20 ± 5.50 103.20 ± 6.30 0.24b

CAPS total score 52.33 ± 9.44 8.26 ± 9.31 \0.01b

SD standard deviation, PTSD post-traumatic stress disorder, HC

healthy controls, IQ intelligence quotient, CAPS clinician-adminis-

tered PTSD scale (range 0–136)
a The p value was obtained by Chi square test
b The p values were obtained by two-sample t tests
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top fifteen selected univariate, bivariate and multivariate

features are provided in Figs. 5, 6, 7. It is observed that the

selected univariate features are from both brain

hemispheres and all four lobes, indicating the widespread

regional abnormalities over whole brain in PTSD patients.

Based on the selected univariate features, the regions that

contribute for accurate PTSD classification mainly inclu-

ded the bilateral median cingulate gyrus, bilateral orbito-

frontal cortex, bilateral temporal pole, right amygdala,

right inferior parietal lobule, right supplementary motor

area, left postcentral gyrus, left calcarine fissure and right

cerebellum. It can also be observed that the discriminative

bivariate and multivariate features that contribute for

classification are not only restricted within the same lobe or

hemisphere but also across different lobes and hemi-

spheres. This indicated that the connections between dif-

ferent areas of the brain, either adjacent or distant, might

provide some meaningful information for describing the

neurobiological underpinnings of PTSD symptoms. Based

on the selected bivariate and multivariate features, most of

the connections were associated with the prefrontal cortex.

Discussion

This study demonstrated for the first time that patients with

PTSD can be discriminated from healthy controls using

multi-level features extracted from resting-state fMRI data.

The classification performance was evaluated via a nested

leave-pair-out cross-validation strategy to ensure the gen-

eralization of the classifier. In agreement with our first

hypothesis, each level of features can successfully dis-

criminate PTSD patients from healthy controls. The best

classification accuracy achieved by single-level method

was 75 %. In contrast, the obtained results showed that our

proposed framework can improve the classification per-

formance by using a multi-kernel learning approach to fuse

multi-level features. Specifically, our method achieved a

high classification accuracy of 92.5 % (p \ 0.001) for

Table 3 Classification performance using different levels of features

Feature types p value ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) YOI AUC

Univariate \0.010 70.0 65.0 75.0 72.2 68.2 0.40 0.64

Bivariate \0.004 72.5 70.0 75.0 73.7 71.4 0.45 0.77

Multivariate \0.003 75.0 75.0 75.0 75.0 75.0 0.50 0.77

Univariate ? bivariate \0.001 82.5 80.0 85.0 84.2 81.0 0.65 0.83

Univariate ? multivariate \0.001 80.0 85.0 75.0 77.3 83.3 0.60 0.84

Bivariate ? multivariate \0.001 87.5 80.0 95.0 94.1 82.6 0.75 0.86

Concatenate \0.001 77.5 80.0 75.0 76.2 79.0 0.55 0.83

Proposed \0.001 92.5 90.0 95.0 94.7 90.5 0.85 0.91

Univariate feature = ALFF; bivariate feature = functional connectivity at the temporal scale; multivariate feature = functional connectivity at

the spatial scale. The plus sign indicates the combination of two given types of features. ‘‘Concatenate’’ means all three feature levels were

concatenated into a long feature vector. The p values were obtained by permutation tests

ACC accuracy, SEN sensitivity, SPE specificity, PPV positive predictive value, NPV negative predictive value, YOI Youden’s index, AUC area

under receiver operating characteristic curve, ALFF amplitude of low-frequency fluctuations

Table 4 Classification performance of each method per fold

Fold U B M U ? B U ? M B ? M C P

1 100 100 100 100 100 100 100 100

2 50 100 100 100 100 100 100 100

3 100 0 100 50 100 100 100 100

4 100 100 100 100 100 100 100 100

5 50 100 50 100 50 100 50 100

6 50 100 100 100 100 100 100 100

7 50 50 100 50 100 100 50 100

8 0 50 50 50 50 50 50 50

9 50 50 0 100 50 50 50 100

10 50 100 100 100 100 100 100 100

11 50 100 50 100 50 100 50 100

12 100 0 0 50 50 0 0 50

13 100 50 100 50 100 100 100 100

14 50 100 100 100 100 100 100 100

15 100 100 100 100 100 100 100 100

16 100 100 100 100 100 100 100 100

17 100 100 100 100 100 100 100 100

18 50 50 50 50 50 100 50 100

19 50 0 50 50 50 50 50 50

20 100 100 50 100 50 100 100 100

Univariate feature = ALFF; bivariate feature = functional connec-

tivity at the temporal scale; multivariate feature = functional con-

nectivity at the spatial scale. The plus sign indicates the combination

of two given types of features. Of note, we used leave-pair-out cross-

validation and the same training and test data were used in all

methods for fair comparison. Thus, there are two subjects in the test

set per fold. The number 0, 50, 100 (%) is the accuracy obtained by

the corresponding method

U univariate, B bivariate, M multivariate, U ? B univariate ? bivar-

iate, U ? M univariate ? multivariate, B ? M bivariate ? multivar-

iate, C concatenate, P proposed
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PTSD classification and the AUC value was 0.91, indi-

cating good discriminatory ability. These results suggested

that single-level features could only afford limited infor-

mation for classifying PTSD from controls, as indicated by

the much smaller accuracy. However, information from

different levels of features complements each other and

potentially improves prediction accuracy. It’s worth noting

that combining biomarkers from different feature types

with different data fusion methods to identify disease is

still an open area of research. Our study demonstrated that

multi-level features with multi-kernel learning can be used

to discriminate PTSD patients with a relatively high

accuracy.

In recent years, machine learning methods have been

used extensively to identify brain disease and have

obtained promising results (Liu et al. 2013c; Suk et al.

2013; Wee et al. 2014; Westman et al. 2013). Relative to

the conventional methods based on group comparison,

these kinds of methods allow inferences at the individual

level rather than the group, and therefore yielding results

with a potentially high level of clinical translation. Most

importantly, machine learning approaches have the

advantage of taking into account the relationship among

features. Therefore, they are sensitive to spatially distrib-

uted and subtle differences in the brain, which may

otherwise be undetectable using traditional univariate

methods that focus on gross differences at group level. As

shown in Figs. 2, 3, 4, visual examination suggests that the

distributions of three levels of features are remarkably

similar between groups in spite of some differences in

Fig. 5 The most discriminative univariate features (regional ALFF).

To better represent the relative contribution of brain regions for

classification, the regions were projected onto the cortical surface

(top) and shown in 2D slice images (down). The color represents the

feature weight (normalized selection frequency, i.e., the ratio of the

actual number of selection times divided by the maximum possible

number of selection times (always selected to form the final feature

set in each cross-validation iteration)) for each ROI. The surface maps

were visualized using BrainNet Viewer (Xia et al. 2013) and 2D slice

map was made by using MRIcron (http://www.mccauslandcenter.sc.

edu/mricro/mricron/). L left, R right (Color figure online)
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strength. For example, those regions with higher ALFF of

two groups are primarily located in the bilateral medial

prefrontal regions as well as lateral parietal regions and

occipital regions. Classification results showed that regio-

nal ALFF could be used to successfully classify PTSD

patients with an accuracy of 70 % (p \ 0.01). This indi-

cates that machine learning method has good potential to

find subtle differences between two groups.

The most discriminative univariate features that were

selected using the proposed approach for identifying the

PTSD patients are reported. Regions, which are associated

with the selected univariate features, are widespread and

not restricted to particular brain hemispheres or lobes.

These regions have been investigated before and are

thought to be associated with PTSD, including the cingu-

late gyrus (Lanius et al. 2002; Tuescher et al. 2011),

orbitofrontal cortex (Croy et al. 2010; Yan et al. 2013),

temporal pole (Jatzko et al. 2006), amygdala (El Khoury-

Malhame et al. 2011; Shin et al. 2006; Zantvoord et al.

2013), postcentral gyrus (Lindemer et al. 2013), inferior

parietal lobule (Morey et al. 2008; Yin et al. 2012), cere-

bellum (Bing et al. 2013), pallidum (Long et al. 2013),

calcarine fissure (Molina et al. 2010), occipital cortex

(Chao et al. 2012) and supplementary motor area (Shaw

et al. 2009). The fact that our experimental results are

consistent with these previous studies demonstrates the

efficacy of the proposed framework in identifying bio-

markers for PTSD classification. It is interesting to observe

that several regions in the limbic system have been selected

as discriminative features. The limbic system is a group of

interconnected cortical and subcortical regions which is

primarily responsible for regulating human emotions as

well as the formation of memories (Mega et al. 1997). In

addition, this system has widespread connections to

extensive cortical areas known as the neuroanatomical

circuits of mood regulation, including the orbitofrontal

cortex, cingulate gyrus, amygdala and so on (Catani et al.

2013). Recent studies have found that dysfunctions of the

limbic regions are associated with emotion dysregulation in

PTSD patients (Etkin and Wager 2007; Lanius et al. 2010).

Therefore, these findings suggest that functional alterations

in the limbic system are closely associated with the path-

ophysiology of PTSD.

Although a considerable body of evidence has accu-

mulated over recent years on the regional dysfunction in

PTSD, limited studies have investigated the changes in

Fig. 6 Connectogram of the

most discriminative bivariate

features (temporal functional

connectivity). Of note, the left

part of the figure represents the

left hemisphere and the right

part of the figure represents the

right hemisphere of the brain.

Thickness of each line reflects

its selection frequency, i.e., a

thicker line indicates a higher

selection frequency. FRO

frontal lobe, PAR parietal lobe,

OCC occipital lobe, TEM

temporal lobe, SUB subcortical

regions, CER cerebellum

hemisphere, VER vermis. The

other abbreviations can be

found in Table 1
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functional interaction between brain regions in PTSD

patients during the resting state, which may provide com-

plementary yet crucial information for better understanding

of the pathophysiology of PTSD. In this study, we used

both temporal and spatial functional connectivity as clas-

sification features and thus examined the alterations of

functional connectivity in a comprehensive way. As shown

in Figs. 6, 7, the most discriminative temporal and spatial

connections have similar patterns. The selected bivariate

and multivariate features mainly involve the prefrontal

cortex, which is in line with a recently published study (Jin

et al. 2014). The prefrontal cortex is known to be a key

structure in the processes of body regulation, fear modu-

lation and working memory (Braun 2011). Abnormal pre-

frontal cortex connectivity may lead to behavioral and

cognitive control changes existed in PTSD.

In this study, we used both temporal functional con-

nectivity and spatial functional connectivity as classifica-

tion features. Since the calculation of the spatial

connectivity pattern is based on the temporal connectivity

pattern, there seems to be largely overlapped information

among these two kinds of features. However, a number of

recent studies have demonstrated that spatial correlation

pattern is also an indispensable tool to investigate human

brain. Two examples were given here for illustrating the

importance of the functional connectivity at the spatial

scale. First, the two core regions, ventromedial prefrontal

cortex (VMPFC) and posterior cingulate cortex (PCC), of

default mode network are highly functionally correlated in

the sense of temporal functional connectivity (Fox et al.

2005). However, the spatial functional connectivity

between VMPFC and PCC may not be so strong. Although

the positively correlated networks for these two regions are

largely overlapped, the negatively correlated networks for

each showed striking differences (Uddin et al. 2009).

Second, Margulies and colleagues have found that different

subdivisions of precuneus have distinct patterns of func-

tional connectivity at the temporal scale (Margulies et al.

2009). Specifically, the anterior part of the precuneus

exhibits functional connectivity with paracentral lobule,

motor cortex and superior parietal cortex; the central part

shows functional connectivity to dorsomedial prefrontal,

dorsolateral prefrontal and multimodal lateral inferior

parietal cortex; the posterior part functionally connects

with adjacent visual cortical regions. Thus, both temporal

and spatial functional connectivity should be used to

Fig. 7 Connectogram of the

most discriminative multivariate

features (spatial functional

connectivity). Of note, the left

part of the figure represents the

left hemisphere and the right

part of the figure represents the

right hemisphere of the brain.

Thickness of each line reflects

its selection frequency, i.e., a

thicker line indicates a higher

selection frequency. FRO

frontal lobe, PAR parietal lobe,

OCC occipital lobe, TEM

temporal lobe, SUB subcortical

regions, CER cerebellum

hemisphere, VER vermis. The

other abbreviations can be

found in Table 1
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comprehensively investigate the functional connectivity of

the brain.

In addition to classification features, the method that

combines the different types of features is also an impor-

tant aspect for classification problem. In traditional clas-

sification methods, different types of features are usually

concatenated into a longer feature vector. However, these

methods may not be sufficiently effective for combining

different types of features. In the current study, a multi-

kernel learning approach was utilized to integrate different

types of features. Hinrichs et al. (2009) have demonstrated

that multi-kernel learning can effectively integrate different

types of features. The main advantage of multi-kernel

learning is that it offers more flexibility by using different

weights on different types of features. This approach may

provide us with a convenient way to combine different

types of features for classification.

Several limitations should be noted. First, this study was

limited by a relatively small sample size, which may limit

the translational value of our results. Although cross-vali-

dation strategy was used to evaluate the performance of

classification method, independent and multi-center imag-

ing datasets should be used to confirm our results in the

future. Second, we used resting-state fMRI data to extract

classification features. Although resting-state fMRI is a

promising technique for measuring spontaneous brain

activity, it lacks direct observation of anatomical connec-

tions. Future studies may benefit from the combination of

resting-state fMRI and diffusion MRI data. Third, previous

studies have demonstrated that head motions a substantial

impact on functional connectivity and other resting-state

measures (Power et al. 2012; Satterthwaite et al. 2012; Van

Dijk et al. 2012; Zeng et al. 2014). Although we controlled

for head motion, we could not fully remove this effect.

Future studies require systematic methodological work on

this issue. Fourth, the whole brain was parcellated into 116

regions based on the AAL atlas. Recent studies have found

that different parcellation schemes generated different

results (Hayasaka and Laurienti 2010; Wang et al. 2009;

Zalesky et al. 2010). Thus, it would be useful to determine

which brain parcellation strategy is more appropriate to

discriminate patients with PTSD in the future. Fifth, as our

study only included patients who experienced motor

vehicle accidents, we urge caution when generalizing these

results to other traumatic events. Finally, we did not assess

the depression and anxiety severity of the enrolled patients

with the Hamilton Depression Scale (HAMD) and Hamil-

ton Anxiety Scale (HAMA). However, we assessed the

severity of these two symptoms with Symptom Checklist

90 (SCL-90) scale (Derogatis et al. 1976). The results

indicated that the patients had only mild depression and

anxiety symptoms. Moreover, depression and anxiety

might be the inherent symptoms which could not be

excluded from the analyses. Therefore, we did not use the

severity of these two symptoms as covariates in the

analyses.

Conclusion

In summary, the current study proposed a novel classification

framework to separate patients with PTSD from demo-

graphically matched healthy controls using multi-level fea-

tures derived from resting-state fMRI scans. Compared with

the single- and two-level methods, improvement in classifi-

cation performance was obtained by integrating the three-

level features via multi-kernel learning. Moreover, the dis-

criminative selected univariate features for accurate classi-

fication were generally consistent with previous studies,

particularly components in the limbic structure, indicating

the ability of our framework in determining PTSD disease-

associated biomarkers. Furthermore, the selected bivariate

and multivariate features showed similar patterns of asso-

ciation with the prefrontal cortex, indicating behavioral and

cognitive control changes in PTSD. These promising clas-

sification results provide evidence of the effectiveness of this

framework for potentially improving the clinical diagnosis

of PTSD. Future studies may benefit from the integration of

diffusion MRI or other imaging modalities as well as genetic

and clinical information.
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